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Abstract

All biologicals whose production involves materials of human or animal origin are at risk of viral contamination.
Testing the capacity of the production processes to remove or inactivate viruses is an essential step in establishing the
safety of biological products. The one-hit model which is essentially based on the assumption that the assay will show
a positive reaction if and only if there is at least one infectious particle in a small sample drawn from the material,
is often used as a basis for the estimation of the number of infectious particles per unit volume, or equivalently, to
estimate the ID50 (the dose which results in 50% positive reactions). Due to the availability of computers it is no
longer necessary to use inadequate and biased methods like Spearman–Kärber to estimate the ID50. Depending on
the details of the experiment the average bias of Spearman–Kärber ID50 estimates is 10–30%. Maximum likelihood
estimation procedures of the parameters, the computation of ID50, reduction factors, and their confidence limits are
presented. Furthermore, hints for the design of the experiments are given. The incorporation of kinetics models is also
discussed. Although the method represents the state of the art in the biostatistical literature, the problem of random
variations of doses has not been addressed appropriately. Based on 36 000 simulated experiments it is shown that the
parameters of the model are robust with respect to random variation of doses. Designs using 10-fold dilution series,
however, are generally less appropriate and also more affected by dose variability. © 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

During vaccine production or the processing of
sera it is essential that the ‘virus reduction’ (virus
removal or virus inactivation) capacity is assessed

by adequate methods, to guarantee predefined
safety standards (Brown, 1993). While the devel-
opment of sensitive and specific assays for virus
detection as a basis for the assessment of such
production processes is mainly a microbiological
problem, the design and evaluation of inactivation
experiments is within the scope of biostatistics.* Tel.: +43-1-404-90-64, ext. 726; fax: +43-1-402-05-10.
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For the following discussion it is irrelevant
whether the virus is added during the production
process to study virus removal or whether the
virus is already present and the inactivation ca-
pacity is assessed.

To test for the presence of infectious particles,
samples from the material being processed are
drawn at several time points or production steps.
The aim of this procedure is to assess the reduc-
tion capacity, to analyse the inactivation kinetics,
to establish the time necessary to reach a given
limit value of infectious particles or for the rou-
tine control of inactivation or removal. There are
several possibilities to measure the concentration
of the infectious agent (e.g. antigen ELISA, Pla-
quetest). In cell culture experiments the sample is
diluted in several steps and each dilution is inocu-
lated into several wells. It will be assumed that
one infectious particle is sufficient to cause a
positive reaction. However, since a single particle
is sufficient to cause the effect, the number of
infectious particles per unit volume can only be
inferred from the dose response curve. It is the
same situation which is known as the ‘most prob-
able number’ (MPN) problem in several fields of
microbiology (Hoskins, 1933; Cochran, 1950;
Koch, 1982; Russek and Colwell, 1983).

In virus inactivation studies, however, typically,
a 50% infectious dose (ID50) is calculated, which
is the dose (dilution) estimated to result in 50% of
positive wells. The model appropriate for this type
of assay is referred to as one-hit model. It is based
on the assumption of a Poisson distribution of the
number of infectious particles within samples, and
it makes use of the fact that a single infectious
particle is sufficient to cause a positive reaction.
Furthermore, if a reasonable assumption exists
about the inactivation kinetics, this kinetics model
can directly be incorporated into the one-hit
model and the total number of parameters be
further reduced and hence the precision of the
estimates enhanced.

The main assumption that a single infectious
particle is sufficient to cause a positive reaction
has to be tested in advance for the assay in
question. The presence of defective interfering
(DI) particles in the tissue culture as well as in the
tested medium might lead to a violation of this

assumption, either due to a failure of virus assem-
bly and therefore to less positive reactions, or due
to an interaction of DI particles in the tested
volume with the genome of the cells leading to a
positive reaction without the presence of an intact
infectious virus, or to titre fluctuations in coin-
fected cultures (Alemany et al., 1998; Lancaster et
al., 1998).

In the following sections the model and appro-
priate estimation procedures, tests of the model
and estimations of confidence limits are presented
and a sample application is shown. It will be
further demonstrated, that the maximum likeli-
hood (ML) estimates are robust with respect to
random variation of doses.

2. Materials and methods

2.1. The one-hit model

The following three assumptions are necessary
and sufficient for the one-hit model:
� The number of infectious particles in small

volumes of the bulk suspension has a Poisson
distribution. (If the organisms are distributed
at random within the bulk suspension and the
sample volumes are small compared to the
total volume, this assumption is justified.)

� The nature of the assay is such that a positive
reaction will occur in every sample if and only
if the sample contains at least one infectious
particle.

� The samples are drawn randomly and indepen-
dently from the bulk suspension and are di-
luted without systematic or random error (the
doses are determined with negligible error—
however, the influence of random variations of
doses will be tested later).
As a single particle is sufficient to cause a

positive reaction, its probability based on the
assumption of an underlying Poisson distribution
for volume (dose) i at time or production step t is,

Pi,t=1−exp(−mdi,t)

where di,t denotes the tested volume and m the
infectivity (virus concentration), which could be
interpreted as the mean number of infectious par-
ticles per unit dose.
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In the context of inactivation experiments, m is
a function of t and one or more parameters u.
The most simple case is a first order inactivation
kinetics, where the number of infectious particles
at time t obeys the simple differential equation:

dm= −mu dt

where u is related to the inactivation half-time by
t1/2= ln 2/u. The solution of this differential equa-
tion is m=m0 exp(−ut). m0 being the virus con-
centration at the start of the inactivation. An
estimate of the total time (tc) necessary to remove
all infectious particles from the bulk follows im-
mediately: tc= l d(m0V)t1/2 (where V denotes the
bulk volume).

It is sometimes claimed that the inactivation is
not a first order reaction and has a fast initial
phase followed by a slower one. However, unless
the rate constants are very different there is no
practical way to experimentally differentiate this
assertion from simple first order kinetics. If there
is doubt whether or not biphasic kinetics are
valid, samples at the time point when all infec-
tious particles will have been removed (under the
assumption of first order kinetics) should be
drawn and tested.

According to the experimental procedure, at
each time point or production step t and each
dose, ni,t replicates are tested. Let xi,t be the
number of positive responses at dose di,t. The
total likelihood is thus (with the constant term
omitted)

ln L=%
i,t

ln Li,t=%
i,t

xi,t ln(emdi,t−1)−%
i,t

ni,tdi,tm

Let S(u)=( ln L/(u be the score function. The
solution of S(u)=0 yields the ML estimates of
the parameters u.

The score function is

S(u)=%
i,t

� xi,tdi,t

1−e−mdi,t
−ni,tdi,t

n(m
(u

In the general case m(u)=ua for a�T, T being
the set of time points or production steps, the
score for ua is

S(ua)=%
i

� xi,adi,a

1−e−ua di,a
−ni,adi,a

n
; a�T

which is a set of N(T) independent score func-
tions. However, since ua is always positive, a
better approach is to use the transformation u*a =
ln(ua). For this case the score function and its
derivative have to be adjusted accordingly.

If m(u)=m0 exp(−ut) then the score function
is given by

S(u)= −%
i,t

� xi,tdi,t

1−e−m(u)di,t
−ni,tdi,t

n
m(u)t

From an estimate m̂ the ID50 is computed:

ID50=
ln 2
m̂

The titer is obtained as the inverse of the ID50.
The estimator’s u. asymptotic variance is

Var(u. )=1/I(u. )

whereI(u)=E{−(2 ln L/(u2}.
From

(2 ln L
(u2 =%

i,t

!� xi,tdi,t

1−e−mdi,t
−ni,tdi,t

n(2m

(u2

−
xi,td i,t

2

2(cosh(mdi,t)−1)
�(m
(u

�2"
the following is found

I(u. a)=%
i

ni,ad i,a
2

eu. a di,a−1
; a�T

for the general case and

I(u. )=%
i,t

ni,t

em(u. )di,t−1
di,t

2 t2m(u. )

for the case of first order inactivation kinetics.
As start value for the estimation algorithm the

least squares estimate of the parameter could be
computed (e.g.(1/k)� ln(n/x)/d for the general
case; k…number of doses).

2.2. Design considerations

Consider an assay applying serial dilutions with
a dilution factor f, starting from a volume V.
Then the doses di,t are given by di,t=V/f i−1.
Hence the standard error of u. a in the general case
is (if there is a constant number of replicates
ni,t=n) indirectly proportional to volume V and
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the square root of n. The design of the experiment
should be adjusted in such a way that the ex-
pected number of doses with at least 1 and at
most n−1 reactions exceeds a predefined value
kmin (]1). From the definition of the model it
follows immediately that the minimum dilution
step (leading to just one negative reaction) is given
by

dilution stepmin=
ln
� Vu

ln(n)
�

ln( f)

and the maximum dilution step (leading to just
one positive reaction) by

dilution stepmax=
ln
� Vu

ln(n)− ln(n−1)
�

ln( f)
.

Hence, the number of steps between the maxi-
mum and minimum (including the limits) is inde-
pendent of the sample volume and the parameter
u :

kpos=
ln
� ln(n)

ln(n)− ln(n−1)
�

ln( f)
+1.

If kposBkmin, either by increasing n or reducing
f, the appropriate number of dilutions could be
determined. The predilution is found by comput-
ing the minimum dilution step.

The expected maximum number of doses with
less than 100% and more then 0% reactions (kpos)
as a function of the number of observations per
dose shows that with less than 20 observations per
dose 10-fold dilution series result in less than
three informative doses. Therefore, 2-fold or half-
log dilutions are more appropriate.

If no positive reaction is found at all tested
doses, no point estimate of the number of infec-
tious particles from the general model is possible.
However, as a conservative approach it can be
assumed that there is just one particle in the
volume at the highest dose. The total volume at
that dose is nV. The estimated concentration of
infectious particles is then 1/nV. The ML estimate
differs somewhat from this figure:

u. = −
1
V

ln
�

1−
1
n

f k− f k−1

f k−1
n

.

The standard error for this estimate is approxi-
mately equal to e, the base of the natural
logarithm.

2.3. Reduction factor

The results of inactivation experiments are of-
ten expressed as reduction factors or rather as
base 10 logarithm of the reduction factor. It is
given by the expression

log10

Vb

Va

ID50
(a)

ID50
(b)

where Vb and ID50
(b) is the volume of the starting

material and the ID50 at the beginning of the
inactivation, and Va and ID50

(a) is the volume and
ID50 after the inactivation (step).

2.4. Tests of the model

Let Si,t(u. )=( ln Li,t(u. )/(u. be the score func-
tion for dose level i at time point t at the location
of the maximum of the total score S(u), and
Ii,t(u. ) be Fisher’s information with respect to the
parameter u at location u. . Then z i,t

2 (u. )=Si,t
2 (u. )/

Ii,t(u. ) is the square of an asymptotically normally
distributed variate with expected value 0 and unit
variance. Hence the sum

xkN−p
2 =%

i,t

z i,t
2 (u. )

is an approximate x2 statistic with kN−p degrees
of freedom (where k is the number of doses per
time point and N is the number of time points
tested and p is the number of parameters esti-
mated). This statistic (Rao, 1973) tests the homo-
geneity of the estimates over doses (and time
points, if the model includes inactivation kinetics).

To test the kinetics model, the likelihood ratio
statistic which is asymptotically x2 distributed
with N−p degrees of freedom could be used: Let
Lk be the likelihood of the kinetics model with p
parameters, at the location of the maximum and
Lg be the likelihood of the general model with N
parameters, at the location of the maximum then
−2 ln(Lk/Lg) is the appropriate statistic.
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Table 1
Results of an inactivation experimenta

Hours after start of inactivationlog dose (mm/well)

4 8 12 15 200.25 1 2

−1.0 1616
14−1.5 16

716161616−2.0
16 16 16−2.5 12 3

−3.0 16 16 15 7 1
716 16 3 0−3.5

16 11 3 0−4.0 16 016 16
161616−4.5 16 10 3 0 0

−5.0 0213151616
003121216−5.5

−6.0 10 7 5
−6.5 3 2 1
−7.0 001
−7.5 0 0 0

4.37 3.54 2.85−logID50 6.15 5.83 5.69 1.955.29
5.09–5.495.51–5.865.65–6.015.96–6.33 4.19–4.5595% CI 3.36–3.72 2.67–3.03 1.77–2.13

Kinetics 1.872.933.564.415.265.686.05 5.89
5.95–6.15 5.60–5.77 5.18–5.33 4.34–4.47 3.49–3.64 2.83–3.02 1.73–2.005.80–5.98Model

a Samples are drawn 0.25–20 h after start of inactivation. Number of positive wells (out of 16) for eight doses, estimate of
log10 ID50 and 95% confidence limits from general model and from first order kinetics model.

2.5. Confidence inter6als

As u. is asymptotically normal, approximate
confidence limits are given by:

uu,l=u. 9 za/2


I(u. )
where za/2 is the 1−a/2 percentile of the standard
normal distribution. If the estimation was not
done based on the logarithmic transformation,
then the confidence limits should be computed
using the following formula:

log uu,l= log u. 9 za/2


u. ·I(u. )
and taking antilogs (Cochran, 1950; Finney,
1978).

An alternative method (Gart, 1991) involves the
iterative solution of

z(u)=
S(u)


I(u)
=9za/2

which accounts for a possible variation in vari-
ances at the limits ul, uu.

The confidence intervals for reduction factors
are computed either directly by the score method
or by observing that the standard error of the
difference between the estimates of the log-con-
centration of infectious particles is given by' 1

I(u. b)
+

1
I(u. a)

(with indexes b and a denoting before and after
the inactivation step).

3. Results and discussion

3.1. Sample application

In an inactivation experiment a pool of sera is
spiked with 6 log10 infectious units of HAV/ml. At
eight time points during inactivation (0.25–20 h



M. Kundi / Anti6iral Research 41 (1999) 145–152150

Table 2
Results of simulated experiments with 2-fold dilution seriesa

Sample ID50 Expected S.D.No of doses n per dose Sample S.D.Variation of Variance ratioTrue ID50

doses (%)

106.3 0.462 0.514 1.2383 5 0 100
103.8 1.5330.57250

1.0750.3390.327101.2010
99.650 0.402 1.511

0.26016 0 101.8 0.258 1.016
99.350 0.342 1.757

1.1940.4120.37749.95005
50 50.2 0.462 1.502

0.266 0.27010 1.0300 49.9
1.4110.31649.150

0.211 0.21316 1.0190 50.4
0.300 2.02250 50.2

108.7 0.434 0.487 1.2595 5 0 100
99.650 1.3220.499

010 1.059102.3 0.3160.307
50 99.8 0.370 1.453

0.243 0.240 0.97516 0 101.3
1.6490.312100.950

0.3245 0 25 24.7 0.310 1.092
0.34750 25.0 1.253

0.219 0.22410 1.0460 24.9
24.4 0.276 1.58850

0.1760.17324.90 1.03516
50 25.3 1.8610.236

5 0 100 108.7 0.426 0.459 1.1618
0.47950 1.264104.4

10 0 99.5 0.3190.302 1.116
1.3740.35499.550

0.2550.238101.2 1.148016
50 99.1 0.289 1.474

0.294 0.297 1.0215 0 8.84 8.58
1.3850.3468.8350

0.20610 0 8.76 0.9810.208
0.26150 9.05 1.575

0.164 0.163 0.98816 0 8.75
0.22050 9.19 1.800

a Five hundred experiments per combination of number of doses, observations per dose, dose variation and ID50. Sample
geometric means of ID50, expected asymptotic and observed S.D. of ln(u), ratio of observed to expected asymptotic variance of ln(u)
are shown.

after start of inactivation) samples of 1 ml are
drawn and serially diluted in 0.5 log10 steps. Start-
ing with 10−4 ml at the first three time points,
with 10−2 ml at the next three, and with 10−1 ml
at the last two time points the diluted samples are
inoculated each in 16 wells of a 8×16 microtiter
plate containing the appropriate cell cultures. The

number of positive wells as well as the estimates
of the ID50 from the general model and from the
kinetics model are shown in Table 1.

The x2 with 56 degrees of freedom (df) for the
general model was 20.303 which indicates an ex-
cellent fit of the model. The likelihood ratio statis-
tic for the kinetics model amounts to 3.293 with 7
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Table 3
Results of simulated experiments with 10-fold dilution seriesa

True ID50 Sample ID50 Expected S.D.No of doses Sample S.D.n per dose Variation of Variance ratio
doses (%)

0.6410.599 1.1453 102.55 0 100
0.912 2.31850 98.3

0.423 0.42110 0 100.2 0.991
0.914 4.66999.850

101.0 0.335 0.365 1.18716 0
0.93750 101.2 7.823
0.5620.580 0.9399.85 0 10

11.0 0.986 2.89050
0.8320.3740.41010.010 0

0.93650 10.9 5.212
0.324 0.33016 0 9.9 1.037

11.3 0.866 7.14450

104.5 0.598 0.633 1.1205 5 0 100
1.1710.64790.850

0.423 0.46010 0 110.3 1.183
0.44950 92.3 1.127

1.1680.335 0.362103.716 0
0.34450 93.5 1.054

0.9050.5490.5770.965 0 1
0.96950 0.99 2.820

0.408 0.39010 0 0.97 0.914
5.0630.9181.0750

1.00 0.322 0.306 0.90316 0
7.3170.8711.0850

0.598 0.6508 5 0 100 1.181106.6
0.91650 82.7 2.346
0.4570.423 1.167106.110 0
0.92250 87.3 4.751

1.1940.3660.335105.216 0
0.93850 96.5 7.840

0.492 0.5325 0 0.032 0.031 1.169
3.8470.9650.03350
1.2180.38410 0 0.031 0.348

0.86850 0.034 6.221
0.2900.275 1.1120.03116 0

0.035 0.815 8.78350

a Five hundred experiments per combination of number of doses, observations per dose, dose variation and ID50. Sample
geometric means of ID50, expected asymptotic and observed S.D. of ln(u), ratio of observed to expected asymptotic variance of ln(u)
are shown.

df, hence the kinetics model shows no significant
deviation. The time necessary to remove all virus
particles from 1 l serum was estimated to be about
61.25 h. Hence, the virus removal is too slow, and
appropriate measures have to be taken to increase
the rate of virus inactivation.

3.2. Simulation study

The one-hit model assumes that the doses di,t

are free from errors. However, in practical appli-
cations the doses will vary randomly from sample
to sample. It is also possible that due to dilution
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errors systematic deviations from the projected
doses occur. In the latter case only direct experi-
mental variations, applying different dilution fac-
tors, are suitable to detect this source of error.
Random variation of doses might lead to under-
estimation of the variance of the estimator and to
an increase of the number of invalid tests and
also to biased estimates of the ID50. Hence, the
question arises whether the ML estimate of the
ID50 based on the model presented is robust with
respect to random variations of doses.

The simulation was done based on the assump-
tion of a log-normal distribution of doses within
dilution steps. For each choice of the ID50, sam-
ple size, number of doses and dilution factor, 500
experiments were generated and evaluated. A to-
tal of 36 000 of such simulated experiments were
carried out. Each design was evaluated with two
choices of ID50 values: one at the first dose and
one at the geometric mean of doses. The simula-
tion was done under the assumption of error-free
doses (0% variation of doses) and under the as-
sumption of a log-normal distribution of doses
with a standard deviation amounting to 1/2 of
the logarithm of the dilution factor (50% varia-
tion of doses). The results of the simulations are
presented in Tables 2 and 3.

With 2-fold dilution series the estimates are
apparently not biased by random dose variations.
As expected, the variance of the estimates based
on randomly varying doses is somewhat greater
than those based on error-free doses. The in-
crease in precision by increasing the number of
doses and/or the number of observations per
dose is less pronounced if doses vary randomly,
hence the variance ratio is greater the higher the
number of doses and observations per dose.
However, the simulation was based on rather a
worst case scenario, since a 50% standard devia-
tion means a 30% overlap of neighboring doses.

Due to doses with zero reactions, 10-fold dilu-
tion series result in considerably higher standard
errors of estimates. This is especially true for
higher numbers of doses. For the ID50 at the first
dose the estimates based on data from randomly
varying doses are slightly biased, and increasingly
so as the number of doses increase. In this case
the variance ratio is also considerably higher.

The observed mean variance in the case of
error-free doses is almost equal to the asymptotic
variance of the estimate for all designs tested.

From the results of the simulation study it is
concluded that
1. designs with 10-fold dilution series are less

appropriate due to the higher number of non-
informative doses (with 0 or 100% positive
reactions) and because of the greater influence
of dose variability;

2. the width of the 95% confidence interval is
less than one log-step for designs with 2-fold
or half-log dilutions if the number of observa-
tions per dose is ten or more and at least five
doses are tested (even if there is random vari-
ation of doses); and

3. experiments should be designed in such a way
that the projected ID50 is as close as possible
to the (geometric) mean dose.
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